ABDK
CONSULTING

SMART CONTRACT
AUDIT

Matter Labs

abdk.consulting

SMART CONTRACT AUDIT CONCLUSION

Mikhail Vladimirov and Dmitry Khovratovich

3 February 2021

We have found a number of issues in the code but all major ones were fixed in the subsequent
releases. The latest release we have audited was this onel

Critical (all fixed)
Major (fixed)
Moderate (3 fixed)

Minor

94

https://github.com/matter-labs/zksync-dev/tree/contracts-4.3/contracts/contracts

Findings

CVF-1 Minor No access level for the OPENED
EMPTY_STRING_KECCAK

CVEF-2 Moderate Incorrect publicDataOffset field FIXED
location

CVEF-3 Moderate Incorrect blockNumber and FIXED
feeAccount location

CVF-4 Minor Magic number OPENED

CVEF-5 Minor No comment for the FIXED
upgradeNoticePeriodStarted()
function

CVF-6 Minor No comment for the FIXED
upgradePreparationStarted()
function

CVF-7 Minor No comment for the FIXED
upgradeCanceled() function

CVF-8 Minor No comment for the FIXED
upgradeFinishes() function

CVF-9 Minor Lost check in the OPENED
isReadyForUpgrade ()

CVF-10 Minor No check for the _genesisStateHash OPENED

CVF-11 Minor Uninitialized OPENED

numberOfPendingWithdrawals_
DEPRECATED variable

CVF-12 Minor Suboptimal check OPENED

CVF-13 Minor Incorrect _tokenAddress type FIXED

CVF-14 Minor No check for balanceDiff <= OPENED
_maxAmount, "wtgl2"

CVEF-15 Minor Similar variable naming FIXED

CVF-16 Minor Multiple priorityRequests[id] OPENED
calculating

CVF-17 Minor Overflow in balanceToWithdraw += OPENED
op.amount

CVEF-18 Minor Not validated _zkSyncAddress OPENED

CVF-19 Minor Not validated _zkSyncAddress-2 OPENED

CVF-20 Minor Gas spending OPENED
CVF-21 Minor Redundant calculating OPENED
CVF-22 Minor Unseparated require statements OPENED
CVF-23 Minor Redundant assignment FIXED
CVF-24 Minor Overflow in commitBlocks operation OPENED
CVF-25 Minor Redundant logging OPENED
CVF-26 Minor Overflow in the withdrawOrStore OPENED
function
CVF-27 Minor Redundant conversion OPENED
CVF-28 Minor Several OPENED
_blockExecuteData.storedBlock.blockl
calculating
CVF-29 Minor Redundant FIXED

_blockExecuteData.storedBlock.blocklt
<= totalBlocksProofed check

CVF-30 Minor Incorrect totalBlocksProofed naming FIXED
CVEF-31 Minor Multiply pubdata hashing OPENED
CVF-32 Minor Overflow in the executeOneBlock OPENED
CVF-33 Minor Redundant block logging OPENED
CVF-34 Minor No event logging in the proveBlocks FIXED
CVF-35 Moderate Inefficient data structure OPENED
CVF-36 Minor Inefficient assignment OPENED
CVF-37 Critical No check for the _proof.commitments FIXED
CVF-38 Minor Inconsistent function naming OPENED
CVF-39 Critical Dangerous conditional statement FIXED
CVF-40 Major Suboptimal assignment FIXED
totalBlocksProofed =
totalBlocksCommitted;
CVF-41 Minor Unclear condition Franklin -> FIXED
ZkSync
CVF-42 Minor Incorrect comment OPENED
CVF-43 Minor Uncommon uint (-1) form OPENED
CVF-44 Minor Redundant commitment = commitment OPENED

& mask; assignment

CVF-45 Minor The redundant OPENED
emitDepositCommitEvent function

CVF-46 Minor Suboptimal totalBlocksProofed = OPENED
totalBlocksCommitted; assign
CVF-47 Minor Redundant emitFullExitCommitEvent OPENED
function
CVF-48 Minor Inefficient uint32 counter using FIXED
CVF-49 Minor The redundant pubdataOffset OPENED
CHUNK_BYTES == 0, "fcso2" check
CVF-50 Minor Redundant pubdataOffset / FIXED
CHUNK_SIZE calculating
CVF-51 Minor Suboptimal bytes allocating OPENED
CVF-52 Moderate Line refactoring FIXED
CVF-53 Minor Over-complicated CREATE2 public OPENED
key method
CVF-54 Minor Unclear purpose 0 assignment OPENED
CVF-55 Minor Expensive hashing OPENED
CVF-56 Minor Overflow in the addPriorityRequest OPENED
function
CVFE-57 Minor Unclear logging purpose OPENED
CVF-58 Minor Dangerous function call OPENED
CVF-59 Minor Redundant payable function OPENED
CVF-60 Minor Draft code FIXED
CVF-61 Minor The magic number 500000 OPENED
CVF-62 Minor Redundant variable OPENED
CVF-63 Minor Suboptimal assignment uint256 mask FIXED
= ("uint256(0)) >> 3;
CVF-64 Minor Redundant cast FIXED
CVF-65 Minor Suboptimal constant passing OPENED
CVF-66 Minor Redundant OPENED
PendingWithdrawal _DEPRECATED
struct
CVF-67 Minor Suboptimal totalBlocksVerified FIXED

variable

CVF-68 Minor Confusing OPENED
totalCommittedPriorityRequests
variable name

CVF-69 Minor Incorrect comment FIXED
CVEF-70 Minor Non-existent StoredBlockInfo FIXED
structure
CVF-T71 Minor The comment to non-existent FIXED
StoredBlockInfo structure
CVF-72 Minor Unclear comment OPENED
CVF-73 Minor No check for the callSuccess OPENED
CVF-74 Minor No check for the callSuccess-2 OPENED
CVF-75 Minor Redundant OPENED
ETH_WITHDRAWAL_GAS_LIMIT variable
CVF-76 Minor No check for the returned value OPENED
CVFE-77 Minor The Config contract converting FIXED
CVF-78 Minor Small 50 000 limit OPENED
CVF-79 Minor No access level for the OPENED
ERC20_WITHDRAWAL_GAS_LIMIT
constant
CVF-80 Minor No access level for the OPENED
MASS_FULL_EXIT_PERIOD constant
CVF-81 Minor No access level for the OPENED
TIME_TO_WITHDRAW_FUNDS_FROM_FULL_EXT'
constant
CVF-82 Minor No access level for the OPENED
UPGRADE_NOTICE_PERIOD constant
CVF-83 Minor No access level for the OPENED
COMMIT_TIMESTAMP_NOT_OLDER
constant
CVF-84 Minor No access level for the OPENED
COMMIT_TIMESTAMP_APPROXIMATION_DELTA
constant
CVF-85 Minor Redundant Add in the variable name OPENED
CVF-86 Minor Redundant queueStartIndex property OPENED
CVF-87 Minor Unclear queueEndIndex index purpose OPENED
CVF-88 Minor Not emitted OPENED

PendingWithdrawalsComplete event

CVF-89 Minor Redundant queueStartIndex property OPENED
CVF-90 Minor Unseparated TokenPausedUpdate event OPENED
CVF-91 Minor Unread address => bool mapping OPENED
CVF-92 Minor Unclear identification OPENED
CVF-93 Minor Redundant "52 constructor() {}" FIXED
line

CVF-94 Minor The because it typo OPENED
CVF-95 Minor Increased gas consumption OPENED
CVF-96 Minor Suboptimal slice copying OPENED
CVF-97 Minor Suboptimal slice copying-2 OPENED
CVF-98 Minor Ignored operation type OPENED
CVF-99 Minor Unclear opType field behavior FIXED

CVF-100 Minor Confusing ChangePubkeyType name OPENED

CVF-101 Minor Unusual Create2 name OPENED

ZkSync Phase 2 p. 2

Audit

Contents

1 Introduction 11
1.1 About ABDK e 11
1.2 About Customer e 11
1.3 About Customer L 11
1.4 Disclaimer e 11

2 Detailed Results 12
2.1 CVF-1 No access level for the EMPTY_STRING_.KECCAK 12
2.2 CVF-2 Incorrect publicDataOffset field location 12
2.3 CVF-3 Incorrect blockNumber and feeAccount location 12
24 CVF-4 The magic number. e 13
2.5 CVF-5 No comment for the upgradeNoticePeriodStarted() function 13
2.6 CVF-6 No comment for the upgradePreparationStarted() function 13
2.7 CVF-7 No comment for the upgradeCanceled() 14
2.8 CVF-8 No comment for the upgradeFinishes() 14
2.9 CVF-9 Lost check in the isReadyForUpgrade() 14
2.10 CVF-10 No check for the _genesisStateHash 15
2.11 CVF-11 Uninitialized numberOfPendingWithdrawals DEPRECATED variable 15
2.12 CVF-12 Suboptimal check 15
2.13 CVF-13 Incorrect _tokenAddress type Lo 16
2.14 CVF-14 Check absence L 16
2.15 CVF-15 Similar variable naming L L oo 16
2.16 CVF-16 Multiple priorityRequests|id] calculating 17
2.17 CVF-17 Overflow in balanceToWithdraw += op.amount 17
2.18 CVF-18 Not validated zkSyncAddress 17
2.19 CVF-19 Not validated _zkSyncAddress-2, 18
2.20 CVF-20 Gasspending e 18
2.21 CVF-21 Redundant calculating L 19
2.22 CVF-22 Unseparated require statements 19
2.23 CVF-23 Redundant assignment oo 19
2.24 CVF-24 Possible overflow in the commitBlocks operation 20
2.25 CVF-25 Redundant logging 20
2.26 CVF-26 Possible overflow in the withdrawOrStore 20
2.27 CVF-27 Redundant conversion oo 21
2.28 CVF-28 Several _blockExecuteData.storedBlock.blockNumber calculating 21
2.29 CVF-29 Redundant check 21
2.30 CVF-30 Incorrect totalBlocksProofed naming, 22
2.31 CVF-31 Multiply pubData hashing 22
2.32 CVF-32 Overflow in the executeOneBlock 22
2.33 CVF-33 Redundant block logging 23
2.34 CVF-34 No event logging in the proveBlocks 23
2.35 CVF-35 Inefficient data structureo 23
2.36 CVF-36 Inefficient assignment o 24
2.37 CVF-37 No check for the _proof.commitments 24
2.38 CVF-38 Inconsistent function naming L L oo 24
2.39 CVF-39 Dangerous conditional statement 25
2.40 CVF-40 Suboptimal assignment totalBlocksProofed = totalBlocksCommitted; 25

ZkSync Phase 2 p. 2

Audit

2.41 CVF-41 Unclear name e e e 25
2.42 CVF-42 Incorrect comment 26
2.43 CVF-43 Uncommon uint(-1) form o L 26
2.44 CVF-44 Redundant assignment e 26
2.45 CVF-45 The redundant emitDepositCommitEvent function 27
2.46 CVF-46 Suboptimal totalBlocksProofed = totalBlocksCommitted; assign 27
2.47 CVF-47 Redundan temitFullExitCommitEvent function 28
2.48 CVF-48 Inefficient uint32 counter using 28
2.49 CVF-49 The redundant check 28
2.50 CVF-50 The redundant calculating 29
2.51 CVF-51 Suboptimal bytes allocating 29
2.52 CVF-52 Line refactoring 30
2.53 CVF-53 Over-complicated CREATE2 public key method 30
2.54 CVF-54 Unclear purpose 0 assignment 31
2.55 CVF-55 Expensive hashing 31
2.56 CVF-56 Overflow in the addPriorityRequest function 31
2.57 CVF-57 Unclear logging purpose o o 32
2.58 CVF-58 Dangerous function call 32
2.59 CVF-59 Redundant payable function 32
2.60 CVF-60 Draft code e 33
2.61 CVF-61 Magic number 500000o 33
2.62 CVF-62 Redundant variable 33
2.63 CVF-63 Suboptimal assignment 34
2.64 CVF-64 Redundantcast e 34
2.65 CVF-65 Suboptimal constant passing 34
2.66 CVF-66 Redundant PendingWithdrawal DEPRECATED struct 35
2.67 CVF-67 Suboptimal the totalBlocksVerified variable 35
2.68 CVF-68 Confusing totalCommittedPriorityRequests variable name 35
2.69 CVF-69 Incorrect comment 36
2.70 CVF-70 Non-existent StoredBlockInfo structure 36
2.71 CVF-71 The comment to non-existent StoredBlocklnfo structure 36
2.72 CVF-72 Unclear comment e 37
2.73 CVF-73 No check for the callSuccess 37
2.74 CVF-74 No check for the callSuccess-2 37
2.75 CVF-75 Redundant ETH WITHDRAWAL_GAS_LIMIT variable 38
2.76 CVF-76 No check for the returned value 38
2.77 CVF-77 The Config contract converting 38
2.78 CVF-78 Small 50 000 limit 39
2.79 CVF-79 No access level for the ERC20_ WITHDRAWA_GAS_LIMIT constant 39
2.80 CVF-80 No access level for the MASS_FULL_EXIT_PERIOD 39
2.81 CVF-81 No access level for the

TIME_TO_WITHDRAW_FUNDS_FROM_FULL_EXIT constant 40
2.82 CVF-82 No access level for the UPGRADE_NOTICE_PERIOD constant 40
2.83 CVF-83 No access level for the

COMMIT_TIMESTAMP_NOT_OLDER constant 40
2.84 CVF-84 No access level for

the COMMIT_TIMESTAMP_APPROXIMATION_DELTA constant 41
2.85 CVF-85 Redundant "Add" in the variable name 41
2.86 CVF-86 Redundant queueStartindex property 41

ZkSync Phase 2 p. 2

Audit
2.87 CVF-87 Unclear queueEndIndex index purpose 42
2.88 CVF-88 Not emitted PendingWithdrawalsComplete event 42
2.89 CVF-89 Redundant queueStartindex property 42
2.90 CVF-90 Unseparated TokenPausedUpdate 43
2.91 CVF-91 Unread mapping o i i it e e 43
2.92 CVF-92 Unclear identification 43
2.93 CVF-93 Redundant "52 constructor()” line. 44
2.94 CVF-94 The "because it" typo e 44
2.95 CVF-95 Increased gas consumption oo 44
2.96 CVF-96 Suboptimal slice copying 45
2.97 CVF-97 Suboptimal slice copying 45
2.98 CVF-98 Ignored operation typeo 45
2.99 CVF-99 Unclear opType field behavior 46
2.100CVF-100 Confusing ChangePubkeyType name 46
2.101CVF-101 Unusual Create2 name o v it i 46

ZkSync Phase 2 p. 2
Audit ABDK

Document properties

Version
0.1 Dec. 25, 2020 D. Khovratovich Initial Draft
and M.
Vladimirov
0.2 Dec. 26, 2020 D. Khovratovich Findings collected
and M.
Vladimirov
0.3 Dec. 28, 2020 D. Khovratovich Minor Revision
and M.
Vladimirov
1.0 Jan. 11, 2021 D. Khovratovich Release
and M.
Vladimirov
1.1 Feb. 02, 2021 D. Khovratovich Comments added
and M.
Vladimirov
Contact

D. Khovratovich

dmitry@abdkconsulting.com

10

ZkSync Phase 2 p. 2
Audit ABDK

1 Introduction

We were asked to review the ZKSync smart contracts given in separate files. This is our second
audit of the ZkSync project, the first was made in spring 2020. In this audit we review Solidity smart
contracts in the following state.

e Release 20 Nov 2020:

— Config.sol

— Events.sol

— Governance.sol

— Operations.sol

— Proxy.sol

— Storage.sol

— UpgradeGateKeeper.sol
— Utils.sol

— Verifier.sol
e Release 27 Nov 2020:
— ZkSync.sol

The audit goal is a general review of the smart contracts structure, critical/major bugs detection
and issuing the general recommendations.

1.1 About ABDK

ABDK Consulting, established in 2016, is a leading service provider in the space of blockchain
development and audit. It has contributed to numerous blockchain projects, and co-authored some
widely known blockchain primitives like Poseidon hash function. The ABDK Audit Team, led by
Mikhail Vladimirov and Dmitry Khovratovich, has conducted over 40 audits of blockchain projects
in Solidity, Rust, Circom, C++-, JavaScript, and other languages.

1.2 About Customer

1.3 About Customer

Matter Labs is a private enterprise that specializes in Layer 2 solutions for Ethereum.

1.4 Disclaimer

Note that the performed audit represents current best practices and smart contract standards which
are relevant at the date of publication.

11

https://github.com/matter-labs/zksync-dev/tree/audit-20-nov-2020/contracts/contracts
https://github.com/matter-labs/zksync-dev/tree/audit-27-nov-2020/contracts/contracts
https://abdk.consulting
https://poseidon-hash.info
https://matter-labs.io/

ZkSync Phase 2 p. 2
Audit ABDK

2 Detailed Results

2.1 CVF-1 No access level for the EMPTY_STRING_KECCAK

e Severity Minor e Status OPENED

e Category Suboptimal e Source ZkSync.sol

Description There is no access level specified for this constant, so internal access will be used by
default.
Recommendation Consider specifying access level explicitly.

Listing 1: No access level for the EMPTY_STRING_KECCAK

28 bytes32 constant EMPTY_STRING.KECCAK = 0
— xcbd2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470
—

2.2 CVF-2 Incorrect publicDataOffset field location

e Severity Moderate e Status FIXED

e Category Suboptimal e Source ZkSync.sol

Description Struct fields are tightly packed but never cross word boundary, so 28 padding bytes will
be inserted after this field.
Recommendation Consider moving the field after ehtWitness.

Listing 2: Incorrect publicDataOffset field location

35 wuint32 publicDataOffset;

2.3 CVF-3 Incorrect blockNumber and feeAccount location

e Severity Moderate e Status FIXED

e Category Suboptimal e Source ZkSync.sol

Description Struct fields are tightly packed but never cross word boundary, so 24 padding bytes will
be inserted after this field. Moving these fields after onChainOperations would address this issue.
Recommendation Consider moving the fields after the onChainOperations.

Listing 3: Incorrect blockNumber and feeAccount location

41 uint32 blockNumber;
42 uint32 feeAccount;

12

ZkSync Phase 2 p. 2
Audit ABDK

2.4 CVF-4 The magic number

e Severity Minor e Status OPENED

e Category Suboptimal e Source ZkSync.sol

Recommendation 16 in this line should be made a named constant.

Listing 4: Magic number

63 uint256[16] subproofsLimbs;

2.5 CVF-5 No comment for the upgradeNoticePeriodStarted() function

e Severity Minor e Status FIXED

e Category Documentation e Source ZkSync.sol

Description It should be noted in the comments that access to this function is controlled by the
Proxy. Otherwise it looks like a security hole.
Recommendation Add an explicit comment.

Listing 5: No comment for the upgradeNoticePeriodStarted() function

74 function upgradeNoticePeriodStarted () external override

= {}

2.6 CVF-6 No comment for the upgradePreparationStarted() function

e Severity Minor e Status FIXED

e Category Documentation e Source ZkSync.sol

Description It should be noted in comments that access to this function is controlled by the Proxy.
Otherwise it looks like a security hole.
Recommendation Add an explicit comment.

Listing 6: No comment for the upgradePreparationStarted() function

77 function upgradePreparationStarted() external override {

13

ZkSync Phase 2 p. 2
Audit ABDK

2.7 CVF-7 No comment for the upgradeCanceled()

function
e Severity Minor e Status FIXED
e Category Documentation e Source ZkSync.sol

Description It should be noted in comments that access to this function is controlled by the Proxy.
Otherwise it looks like a security hole.
Recommendation Add an explicit comment.

Listing 7: No comment for the upgradeCanceled() function

83 function upgradeCanceled() external override {

2.8 CVF-8 No comment for the upgradeFinishes()

function
e Severity Minor e Status FIXED
e Category Documentation e Source ZkSync.sol

Description It should be noted in comments that access to this function is controlled by the Proxy.
Otherwise it looks like a security hole.
Recommendation Add an explicit comment.

Listing 8: No comment for the upgradeFinishes() function

89 function upgradeFinishes() external override {

2.9 CVF-9 Lost check in the isReadyForUpgrade()

e Severity Minor e Status OPENED

e Category Unclear behavior e Source ZkSync.sol

Description In the previous version it was checked that there is no open priority requests. Why this
check is not needed anymore?

Recommendation Perhaps, there should be check.

Client comment We founded that checking that there is no priority requests is not enough, so we
changed upgrade logic. Now user have enough time to withdraw funds in case of some evil upgrade
due to big NOTICE_PERIOD.

Listing 9: Lost check inisReadyForUpgrade()

97 return !exodusMode;

14

ZkSync Phase 2 p. 2
Audit ABDK

2.10 CVF-10 No check for the _genesisStateHash

e Severity Minor e Status OPENED

e Category Suboptimal e Source ZkSync.sol

Description Genesis state is passed as a constructor argument, which means that genesis is not
guaranteed to be empty.
Client comment This function will never be called on the PROD.

Listing 10: No check for the _genesisStateHash

116 StoredBlocklInfo (0, 0, EMPTY_STRING.KECCAK, 0,
< _genesisStateHash , bytes32(0));

2.11 CVF-11 Uninitialized numberOfPendingWithdrawals DEPRECATED variable

e Severity Minor e Status OPENED

e Category Suboptimal e Source ZkSync.sol

Description The variable is used without being initialized.
Recommendation Initialize the variable.
Client comment This value is deprecated starting from this upgrade.

Listing 11: Uninitialized number@fPendingWithdrawals_ DEPRECATED variable

128 require (numberOfPendingWithdrawals_ DEPRECATED = 0, "upg4

< "); // pending withdrawal is not used anymore

2.12 CVF-12 Suboptimal check

e Severity Minor e Status OPENED

e Category Suboptimal e Source ZkSync.sol

Description The block.timestamp in this line would probably be more appropriate for the check at
line 287.
Recommendation Consider using block.tomestamp.

Listing 12: Suboptimal check
139 0,

15

ZkSync Phase 2 p. 2
Audit ABDK

2.13 CVF-13 Incorrect _tokenAddress type

e Severity Minor e Status FIXED

e Category Suboptimal e Source ZkSync.sol

Recommendation The _tokenAddress in this line should have type IERC20.

Listing 13: Incorrect _tokenAddress type

154 address _tokenAddress ,

2.14 CVF-14 Check absence

e Severity Minor e Status OPENED
e Category Suboptimal e Source ZkSync.sol
Description It is never checked that _amount <= _maxAmount and for cases where _to == this,

the balance change doesn’t accurately reflect the amount of token transferred.
Recommendation Consider adding explicit check that _amount <= _maxAmount.

Listing 14: No check for balanceDiff <=__maxAmount, "wtgl2"

166 require(balanceDiff <= _maxAmount, "wtgl2"); // wtgl2 —
< rollup balance difference (before and after transfer) is
— bigger than _maxAmount

2.15 CVF-15 Similar variable naming

e Severity Minor e Status FIXED

e Category Documentation e Source ZkSync.sol

Description Names depositPubdata and depositsPubdata look too similar and get confused.
Recommendation Consider adding underscore to the depositsPubdata

Listing 15: Similar variable naming

182 bytes memory depositPubdata = depositsPubdata|
< currentDepositldx];

16

ZkSync Phase 2 p. 2
Audit ABDK

2.16 CVF-16 Muiltiple priorityRequests|id] calculating

e Severity Minor e Status OPENED

e Category Suboptimal e Source ZkSync.sol

Description The priorityRequests[id] is calculated multiple times.
Recommendation Consider calculating once and caching in a local variable.

Listing 16: Multiple priorityRequests[id] calculating

183 require(Utils.hashBytesToBytes20(depositPubdata) —
< priorityRequests|[id].hashedPubData, "coe03");

2.17 CVF-17 Overflow in balanceToWithdraw += op.amount

e Severity Minor (degraded from Major) e Status OPENED

e Category Overflow e Source ZkSync.sol

Description Overflow is possible in this line.
Client comment The DepositERC20 function allows deposit only 2**104-1 tokens per call. Over-
flow is impossible.

Listing 17: Overflow in balanceToWithdraw += op.amount

188 balancesToWithdraw [packedBalanceKey]. balanceToWithdraw +=
~— Oop.amount;

2.18 CVF-18 Not validated _zkSyncAddress

e Severity Minor e Status OPENED

e Category Suboptimal e Source ZkSync.sol

Description The _zkSyncAddress is not validated. Probably, not an issue.
Client comment Not an issue.

Listing 18: Not validated _zkSyncAddress

206 function depositETH(address _zkSyncAddress) external
< payable nonReentrant {

17

ZkSync Phase 2 p. 2
Audit ABDK

2.19 CVF-19 Not validated _zkSyncAddress-2

e Severity Minor e Status OPENED

e Category Suboptimal e Source ZkSync.sol

Description The _zkSyncAddress is not validated. Probably, not an issue.
Client comment Not a issue.

Listing 19: Not validated _zkSyncAddress

206 function depositETH(address _zkSyncAddress) external
— payable nonReentrant {

2.20 CVF-20 Gas spending

e Severity Minor e Status OPENED

e Category Suboptimal e Source ZkSync.sol

Description This operation is suboptimal, as Solidity will try to preserve the balanceToWithdraw
field, i.e. read the slot, then use some bit wise operations to set the gasREserveValue preserving
the balanceToWithdraw, then write it back. This is even more suboptimal when current the
balanceToWithdraw is already non-zero.

Recommendation Consider using the lowest bit for gas reserve the next code:

if (balanceToWithdraw == 0)
balanceToWithdraw = 1;

In the rest of the code, just multiply values by two before setting them to the balanceToWithdraw
and divide by two before using stored the balanceToWithdraw value. This will make code simpler
and more efficient.

Client comment We will skip due to very small relative profit.

Listing 20: Gas spending

273 balancesToWithdraw [packedBalanceKey]. gasReserveValue =
— FILLED_GAS_RESERVE_VALUE;

18

ZkSync Phase 2 p. 2
Audit ABDK

2.21 CVF-21 Redundant calculating

e Severity Minor e Status OPENED

e Category Suboptimal e Source ZkSync.sol

Description This doesn't need to be calculated in case the timestampNoTooBig is false.
Client comment Not an issue.

Listing 21: Redundant calculating

289 bool timestampNotTooBig = _newBlock.timestamp <= block.
< timestamp + COMMIT_TIMESTAMP_APPROXIMATION_DELTA;

2.22 CVF-22 Unseparated require statements

e Severity Minor e Status OPENED

e Category Suboptimal e Source ZkSync.sol

Description This checks two different conditions, but outputs the same error message regardless of
what condition failed.

Recommendation Consider using two separate require statements.

Client comment Not an issue.

Listing 22: Unseparated require statements

290 require (timestampNotTooSmall && timestampNotTooBig,
< tmsl12"); // New block timestamp is not valid

2.23 CVF-23 Redundant assignment

e Severity Minor e Status FIXED

e Category Suboptimal e Source ZkSync.sol

Description This assignment is redundant, as _lastCommittedBlockData is not used after it.
Recommendation Just use _lastCommittedBlockData instead of lastCommittedBlock.

Listing 23: Redundant assignment

323 StoredBlockIinfo memory lastCommittedBlock =
— _lastCommittedBlockData;

19

ZkSync Phase 2 p. 2
Audit ABDK

2.24 CVF-24 Possible overflow in the commitBlocks operation

e Severity Minor (degraded from Moderate) e Status OPENED

e Category Overflow e Source ZkSync.sol

Description Overflow is possible in this line
Client comment Overflow is impossible.

Listing 24: Overflow in commitBlocks operation

329 committedPriorityRequests += lastCommittedBlock.
< priorityOperations;

2.25 CVF-25 Redundant logging

e Severity Minor e Status OPENED

e Category Suboptimal e Source ZkSync.sol

Description There is no point to log the numbers of intermediary blocks without any additional
information.
Recommendation Just logging the number of the final committed block would be enough.

Listing 25: Redundant logging

332 emit BlockCommit(lastCommittedBlock.blockNumber);

2.26 CVF-26 Possible overflow in the withdrawQOrStore

e Severity Minor (degraded from Moderate) e Status OPENED

e Category Overflow e Source ZkSync.sol

Description Overflow is possible in this line.
Client comment Overflow is impossible.

Listing 26: Overflow in the withdrawOrStoren

335 totalBlocksCommitted += uint32(_newBlocksData.length);

20

ZkSync Phase 2 p. 2
Audit ABDK

2.27 CVF-27 Redundant conversion

e Severity Minor e Status OPENED

e Category Suboptimal e Source ZkSync.sol

Description The double conversion is probably redundant.

Listing 27: Redundant conversion

353 address payable toPayable = address(uintl60(_recipient))
—

2.28 CVF-28 Several DblockExecuteData.storedBlock.blockNumber calculating

e Severity Minor e Status OPENED

e Category Suboptimal e Source ZkSync.sol

Description The _blockExecuteData.storedBlock.blockNumber is calculated several times in
this function.

Recommendation Consider calculating once and caching in a local variable.

Client comment We will skip due to very small relative profit.

Listing 28: Several _blockExecuteDataustoredBlock.blockNumber calculating

381 require (_blockExecuteData.storedBlock.blockNumber —
— totalBlocksVerified + _executedBlockldx + 1, "exell”); //
< Execute blocks in order

2.29 CVF-29 Redundant check

e Severity Minor e Status FIXED

e Category Suboptimal e Source ZkSync.sol

Recommendation It could be checked once in the executeBlocks for the whole batch.

Listing 29: _blockExecuteData.storedBlock.blockNumber <= totalBlocksProofed check

382 require(_blockExecuteData.storedBlock.blockNumber <=
— totalBlocksProofed , "exe03"); // Can't execute blocks more
< then committed and proofed currently.

21

ZkSync Phase 2 p. 2
Audit ABDK

2.30 CVF-30 Incorrect totalBlocksProofed naming

e Severity Minor e Status FIXED

e Category Documentation e Source ZkSync.sol

Recommendation The totalBlocksProven would be a more correct name.

Listing 30: Incorrect totalBlocksProofed naming

382 require (_blockExecuteData.storedBlock.blockNumber <=
— totalBlocksProofed , "exe03"); // Can't execute blocks more
— then committed and proofed currently.

2.31 CVF-31 Multiply pubData hashing

e Severity Minor e Status OPENED

e Category Suboptimal e Source ZkSync.sol

Recommendation Passing all pubData for a block as one bytes array would make it possible to
hash it all at once.
Client comment Will be fixed in the next versions.

Listing 31: Multiply pubData hashing

403 pendingOnchainOpsHash = Utils.concatHash(
< pendingOnchainOpsHash, pubData);

2.32 CVF-32 Overflow in the executeOneBlock

e Severity Minor e Status OPENED

e Category Overflow e Source ZkSync.sol

Description Overflow is possible in this line.
Client comment Overflow is impossible.

Listing 32: Overflow in the executeOneBlock

416 uint32 nBlocks = uint32(_blocksData.length);

22

ZkSync Phase 2 p. 2
Audit ABDK

2.33 CVF-33 Redundant block logging

e Severity Minor e Status OPENED

e Category Suboptimal e Source ZkSync.sol

Description It is redundant to log the number of all intermediary blocks without any additional
information.
Recommendation Logging just the final block number in a batch would be enough.

Listing 33: Redundant block logging

420 emit BlockVerification(_blocksData[i].storedBlock.
< blockNumber) ;

2.34 CVF-34 No event logging in the proveBlocks

e Severity Minor e Status FIXED

e Category Suboptimal e Source ZkSync.sol

Description The proveBlocks function should log some event.

Listing 34: No event logging in the proveBlocks

432 function proofBlocks(

2.35 CVF-35 Inefficient data structure

e Severity Moderate e Status OPENED

e Category Suboptimal e Source ZkSync.sol

Recommendation Passing a single array of structs with two fields would be more efficient than
passing two separate arrays. Also this would make length check unnecessary.
Client comment Can be fixed in the next versions.

Listing 35: Inefficient data structure

433 StoredBlocklnfo [] memory _committedBlocks,
434 uint256 [] memory _commitmentldxs,

23

ZkSync Phase 2 p. 2
Audit ABDK

2.36 CVF-36 Inefficient assignment

e Severity Minor e Status OPENED

e Category Suboptimal e Source ZkSync.sol

Recommendation Starting the totalBlocksProofed from 1 would makes this +1 in many
places unnecessary
Client comment Can be fixed in the next versions.

Listing 36: Inefficient assignment

441 hashStoredBlockInfo(_committedBlocks[i]) =
< storedBlockHashes[currentTotalBlocksProofed + 1],

2.37 CVF-37 No check for the proof.commitments

e Severity Critical e Status FIXED

e Category Unclear behavior e Source ZkSync.sol

Description It is not guaranteed that all elements of the _proof.commitments will be set here, so
some elements could still contain the values passed by the caller. Is this fine?

Listing 37: No check for the _proof .commitments

446 _proof.commitments|[_commitmentldxs[i]] = uint256 (
< _committedBlocks[i].commitment);

2.38 CVF-38 Inconsistent function naming

e Severity Minor e Status OPENED

e Category Documentation e Source ZkSync.sol

Description Some variables have different names in the implementation of this function, which
makes the code difficult to read.
Recommendation Consider using consistent naming.

Listing 38: Inconsistent function naming

450 verifier .verifyAggregatedProof (
451 _proof.recursivelnput ,

452 _proof.proof,

453 _proof.vklndexes,

454 _proof.commitments,

455 _proof.subproofsLimbs,

456 true

24

ZkSync Phase 2 p. 2
Audit ABDK

2.39 CVF-39 Dangerous conditional statement

e Severity Critical e Status FIXED

e Category Suboptimal e Source ZkSync.sol

Description The idea of this conditional statement is to unproved reverted block, while currently it
proves non-reverted blocks.
Recommendation Should be < instead of > here.

Listing 39: Dangerous conditional statement

484 if (totalBlocksCommitted > totalBlocksProofed) {

2.40 CVF-40 Suboptimal assignment totalBlocksProofed = totalBlocksCommit-

ted;
e Severity Major e Status FIXED
e Category Suboptimal e Source ZkSync.sol

Description This arbitrarily increases the counter of proven blocks, even if no blocks are reverted at
all.
Client comment Not an issue after the fix of CVF-309.

Listing 40: Suboptimal assignment totalBlocksProofed = totalBlocksCommitted;

485 totalBlocksProofed = totalBlocksCommitted;

2.41 CVF-41 Unclear name

e Severity Minor e Status FIXED

e Category Documentation e Source ZkSync.sol

Description Perhaps, there should be Franklin -> ZkSync?

Listing 41: Unclear name Franklin -> ZkSync

510 /// @notice Withdraws token from Franklin to root chain
— in case of exodus mode. User must provide proof that he
— owns funds

25

ZkSync Phase 2 p. 2
Audit ABDK

2.42 CVF-42 Incorrect comment

e Severity Minor e Status OPENED

e Category Suboptimal e Source ZkSync.sol

Recommendation This should probably be extracted into an utility function.
Client comment Can be fixed in the next versions.

Listing 42: Incorrect comment

529 uint256 (sha256 (abi.encodePacked(_storedBlocklInfo.
< stateHash, _accountld, msg.sender, _tokenld, _amount)));

2.43 CVF-43 Uncommon uint(-1) form

e Severity Minor e Status OPENED

e Category Suboptimal e Source ZkSync.sol

Description Form uint (-1) is more common than “uint (0). The whole mask should be made a
named constant. The variable is redundant, as its value is constant and is used only once.
noindentClient comment Deprecated part of the code.

Listing 43: Uncommon uint(-1) form

531 uint256 mask = ("uint256(0)) >> 3;

2.44 CVF-44 Redundant assignment

e Severity Minor e Status OPENED

e Category Suboptimal e Source ZkSync.sol

Description This assignment is redundant.
Recommendation Just use commitment & mask instead of commitment in the line below.

Listing 44: Redundant commitment = commitment & mask; assignment

532 commitment = commitment & mask;

26

ZkSync Phase 2 p. 2
Audit ABDK

2.45 CVF-45 The redundant emitDepositCommitEvent function

e Severity Minor e Status OPENED

e Category Suboptimal e Source ZkSync.sol

Description this function is more suitable for Operations.sol, where it can be updated timely if the
data structure is modified. Also, this function is called in only one place and is trivial, so probably
not worth extracting at all.

Client comment Number of variables in the function where this is used is too big so we need to
separate this.

Listing 45: The redundant emitDepositCommitEvent function

597 function emitDepositCommitEvent(uint32 _blockNumber,
< Operations.Deposit memory depositData) internal {

598 emit DepositCommit (

599 _blockNumber,

600 depositData.accountld,

601 depositData.owner,

602 depositData.tokenld ,

603 depositData.amount

604)

605 }

606

607 function emitFullExitCommitEvent(uint32 _blockNumber,
— Operations. FullExit memory fullExitData) internal {

608 emit FullExitCommit (

609 _blockNumber,

610 fullExitData.accountld,

611 fullExitData .owner,

612 fullExitData .tokenld ,

613 fullExitData .amount

614)

615 }

2.46 CVF-46 Suboptimal totalBlocksProofed = totalBlocksCommitted; assign

e Severity Minor e Status OPENED

e Category Suboptimal e Source ZkSync.sol

Description The order of arguments is different from the original struct

Listing 46: Suboptimal totalBlocksProofed = totalBlocksCommitted; assign

598 emit DepositCommit (
608 emit FullExitCommit (

27

ZkSync Phase 2 p. 2
Audit ABDK

2.47 CVF-47 Redundan temitFullExitCommitEvent function

e Severity Minor e Status OPENED

e Category Suboptimal e Source ZkSync.sol

Description The emitFullExitCommitEvent function is called in only one place and is trivial, so
probably not worth extracting at all.

Listing 47: Redundant emitFullExitCommitEventfunction

607 function emitFullExitCommitEvent(uint32 _blockNumber,
— Operations. FullExit memory fullExitData) internal {

2.48 CVF-48 Inefficient uint32 counter using

e Severity Minor e Status FIXED

e Category Suboptimal e Source ZkSync.sol

Description Using uint32 for counter is less efficient than using uint256, as Solidity will truncate
the value to 32 bits after many operations.

Listing 48: Inefficient uint32 counter using

639 for (uint32 i = 0; i < _newBlockData.onchainOperations.
— length; ++i) {

2.49 CVF-49 The redundant check

e Severity Minor e Status OPENED

e Category Suboptimal e Source ZkSync.sol

Description This check as well as division below would not be necessary in case pubdataOffset would
be specified in chunks rather than in bytes.
Client comment Can be fixed in the next versions.

Listing 49: Redundant pubdataOffset % CHUNK_BYTES == 0, ”fcs02” check

643 require (pubdataOffset % CHUNKBYTES =— 0, "fcso2"); //
<« offsets should be on chunks boundaries

28

ZkSync Phase 2 p. 2
Audit ABDK

2.50 CVF-50 The redundant calculating

e Severity Minor e Status FIXED

e Category Suboptimal e Source ZkSync.sol

Description pubdataOffset / CHUNK_SIZE was already calculated in the previous line.
Recommendation Consider calculating once and caching in a local variable.

Listing 50: Redundant pubdataOffset / CHUNK_SIZE calculating

645 offsetsCommitment [pubdataOffset / CHUNK.BYTES] = bytesl(0
— x01);

2.51 CVF-51 Suboptimal bytes allocating

e Severity Minor e Status OPENED

e Category Suboptimal e Source ZkSync.sol

Description Allocating a new bytes array for a slice just for hashing is suboptimal.
Recommendation Consider hashing the slice in place.
Client comment We will skip due to very small relative profit.

Listing 51: Suboptimal bytes allocating

658 bytes memory opPubData = Bytes.slice (pubData,
< pubdataOffset, PARTIAL_EXIT_-BYTES);

29

ZkSync Phase 2 p. 2
Audit

2.52 CVF-52 Line refactoring

e Severity Moderate e Status FIXED

e Category Suboptimal e Source ZkSync.sol

Description The 660 line repeats several times.
Recommendation Consider refactoring according to example.

Listing 52: Example

if (Deposit) {...}
else if (ChangePubKey) {...}
else {

bytes memory opPubData;

if (PartialExit) {...}
else if (ForcedExir) {...}
else if (FullExit) {...}
else {revert}

processableOperationsHash =
Utils.concatHash(
processableOperationsHash ,
opPubData) ;

Listing 53: Line refactoring

660 processableOperationsHash = Utils.concatHash(
< processableOperationsHash , opPubData);

2.53 CVF-53 Over-complicated CREATE2 public key method

e Severity Minor e Status OPENED
e Category Suboptimal e Source ZkSync.sol

Description CREATE2 public key verification method looks over-complicated. If the idea is to bind
a deployed smart contract with a public key, then the smart contract may just implement a public
function that returns the hash of its public key, and zkSync may just call this function.

Listing 54: Over-complicated CREATE2 public key method

736 function verifyChangePubkeyCREATE2(bytes memory
< _ethWitness, Operations.ChangePubKey memory _changePk)

30

ZkSync Phase 2 p. 2
Audit ABDK

2.54 CVF-54 Unclear purpose 0 assighment

e Severity Minor e Status OPENED

e Category Unclear behavior e Source ZkSync.sol

Description Why the nonce is always 07
Client comment We allow use to set this pubkey only once so in case zkSync private key is lost
this key can't be abused.

Listing 55: Unclear purpose 0 assignment

754 return recoveredAddress = _changePk.owner && _changePk.
— nonce — 0;

2.55 CVF-55 Expensive hashing

e Severity Minor e Status OPENED
e Category Unclear behavior e Source ZkSync.sol

Description Hashing all at once would be cheaper. Is it really necessary to hash iterative?
Client comment Left over from previous versions.

Listing 56: Expensive hashing

764 bytes32 hash = sha256(abi.encodePacked(uint256 (

— _newBlockData.blockNumber), uint256 (_newBlockData.
< feeAccount)));

765 hash = sha256(abi.encodePacked(hash, _previousBlock.
< stateHash));

766 hash = sha256(abi.encodePacked(hash, _newBlockData.
< newStateHash));

767 hash = sha256(abi.encodePacked(hash, uint256(

< _newBlockData.timestamp)));

2.56 CVF-56 Overflow in the addPriorityRequest function

e Severity Minor e Status OPENED

e Category Overflow e Source ZkSync.sol

Description Overflow is possible in this line.
Client comment Overflow is impossible here.

Listing 57: Overflow in the addPriorityRequest function

832 uint64 expirationBlock = uint64(block.number +
— PRIORITY_EXPIRATION) ;

31

ZkSync Phase 2 p. 2
Audit ABDK

2.57 CVF-57 Unclear logging purpose

e Severity Minor e Status OPENED

e Category Unclear behavior e Source ZkSync.sol

Description What is the purpose of logging the caller?

Listing 58: Unclear logging purpose

844 emit NewPriorityRequest(msg.sender,
< nextPriorityRequestld , _opType, _pubData, uint256(
— expirationBlock));

2.58 CVF-58 Dangerous function call

e Severity Minor e Status OPENED

e Category Suboptimal e Source Proxy.sol

Description This call may change target address, bypassing checks and logic coded in upgradeTarget
function.

Recommendation While this isn't necessary an issue, this could be prevented by comparitng target
values before and after delegate call and reverting in cae they are different.

Client comment Added the nonReentrant modifier to the upgrade function in the ZkSync.sol.

Listing 59: Dangerous function call

82 let result := delegatecall(

2.59 CVF-59 Redundant payable function

e Severity Minor e Status OPENED

e Category Suboptimal e Source Proxy.sol

Description This function is redundant, as the documentation for receive function states: “If no
such function exists, but a payable fallback function exists, the fallback function will be called on a
plain Ether transfer.” So separate receive function does make sense in case its logic differs from the
logic of fallback function, i.e. not in our case.

Listing 60: Redundant payable function

113 receive () external payable {

32

ZkSync Phase 2 p. 2
Audit ABDK

2.60 CVF-60 Draft code

e Severity Minor e Status FIXED

e Category Suboptimal e Source Verifier.sol

Description This shouldn't be in PROD code.

Listing 61: Draft code

26 if (DUMMY_VERIFIER) {

27 uint oldGasValue = gasleft();

28 uint tmp;

29 while (gasleft() + 500000 > oldGasValue) {
30 tmp 4= 1;

31 }

32 return true;

33 }

2.61 CVF-61 Magic number 500000

e Severity Minor e Status OPENED

e Category Suboptimal e Source Verifier.sol

Description This should be a named constant

Listing 62: Magic number 500000

29 while (gasleft() + 500000 > oldGasValue) {

2.62 CVF-62 Redundant variable

e Severity Minor e Status OPENED

e Category Suboptimal e Source Verifier.sol

Description This variable is redundant

Listing 63: Redundant variable

35 uint256 commitment = _individual_vks_inputs[i];

33

ZkSync Phase 2 p. 2
Audit ABDK

2.63 CVF-63 Suboptimal assignment

e Severity Minor e Status FIXED

e Category Suboptimal e Source Verifier.sol

Description Form uint(-1) is more common that @int(0). Also, the whole mask should be a compile-
time constant. Also, the variable here is redundant as it has constant value. Also, this assignment
should be made only once before the loop.

Listing 64: Suboptimal assignment uint256 mask = (“uint256(0)) >> 3;

36 uint256 mask = ("uint256(0)) >> 3;

2.64 CVF-64 Redundant cast

e Severity Minor e Status FIXED

e Category Suboptimal e Source Verifier.sol
Description The cast is redundant. Also, it potentially loses information.

Recommendation It would be better to just require, that the commitment is a field element.
Client comment Fixed in barichek-sc-changes-for-v4.

Listing 65: Redundant cast

37 _individual_vks_inputs[i] = uint256 (commitment) & mask;

2.65 CVF-65 Suboptimal constant passing

e Severity Minor e Status OPENED

e Category Suboptimal e Source Verifier.sol

Description Passing constants to function calls is probably suboptimal

Listing 66: Suboptimal constant passing

40 return verify_serialized_proof_with_recursion (
— _recursivelnput, _proof, VK.TREELROOT, VK_MAX_NDEX,
< _vkindexes, _individual_vks_inputs, _subproofs_limbs,k vk);

34

ZkSync Phase 2 p. 2
Audit ABDK

2.66 CVF-66 Redundant PendingWithdrawal DEPRECATED struct

e Severity Minor e Status OPENED

e Category Suboptimal e Source Storage.sol

Description As long as this structure is not used anymore, it should be removed.

Listing 67: Redundant PendingWithdrawal DEPRECATED struct

42 struct PendingWithdrawal DEPRECATED {

2.67 CVF-67 Suboptimal the totalBlocksVerified variable

e Severity Minor e Status FIXED

e Category Unclear behavior e Source Storage.sol

Description Is it more correct to be the number of executed blocks? There is now another variable
for proven blocks, totalBlocksProofed

Listing 68: Suboptimal totalBlocksVerified variable

51 uint32 public totalBlocksVerified;

2.68 CVF-68 Confusing totalCommittedPriorityRequests variable name

e Severity Minor e Status OPENED

e Category Documentation e Source Storage.sol

Description The name is confusing as actually this is not the total number of committed priority
requests, but rather the number of committed but not yet executed priority requests.

Listing 69: Confusing totalCommittedPriorityRequests variable name

117 uint64 public totalCommittedPriorityRequests;

35

ZkSync Phase 2 p. 2
Audit ABDK

2.69 CVF-69 Incorrect comment

e Severity Minor e Status FIXED

e Category Documentation e Source Storage.sol

Description Despite tech comment, this structure seems to be still used.

Listing 70: Incorrect comment

129 /// @Rollup block stored data — not used in current
< version

2.70 CVF-70 Non-existent StoredBlocklInfo structure

e Severity Minor e Status FIXED

e Category Unclear behavior e Source Storage.sol

Description This function uses the StoredBlockInfo structure that is claimed to not be used in
current version.

Recommendation Either this function should be removed, or the structure should be recognized as
still used.

Listing 71: Non-existent StoredBlockInfo structure

146 function hashStoredBlockInfo(StoredBlockinfo memory
— _storedBlockInfo) internal pure returns (bytes32) {

2.71 CVF-71 The comment to non-existent StoredBlockInfo structure

e Severity Minor e Status FIXED

e Category Documentation e Source Storage.sol

Description The comment for this mapping refers to the StoredBlockInfo structure that is claimed
to not be used in current version.
Recommendation Either don't refer to that structure or confirm the structure as still being used.

Listing 72: The comment to non-existent StoredBlockInfo structure

151 mapping(uint32 => bytes32) public storedBlockHashes;

36

ZkSync Phase 2 p. 2
Audit ABDK

2.72 CVF-72 Unclear comment

e Severity Minor e Status OPENED

e Category Unclear behavior e Source Storage.sol

Description What is “in one slot” means?
Client comment Deprecated part of the code.

Listing 73: Unclear comment

153 /// @notice Stores verified commitments hashed in one
— slot.

2.73 CVF-73 No check for the callSuccess

e Severity Minor e Status OPENED

e Category Suboptimal e Source Utils.sol

Description This line should be executed only when callSuccess is true.
Client comment We will skip due to very small relative profit.

Listing 74: No check for the callSuccess

31 bool returnedSuccess = callReturnValueEncoded.length =
< 0 || abi.decode(callReturnValueEncoded, (bool));

2.74 CVF-74 No check for the callSuccess-2

e Severity Minor e Status OPENED

e Category Suboptimal e Source Utils.sol

Description This line should be executed only when callSuccess is true.
Client comment We will skip due to very small relative profit.

Listing 75: No check for the callSuccess-2

48 bool returnedSuccess = callReturnValueEncoded.length = 0
— || abi.decode(callReturnValueEncoded, (bool));

37

ZkSync Phase 2 p. 2
Audit ABDK

2.75 CVF-75 Redundant ETH_WITHDRAWAL_GAS_LIMIT variable

e Severity Minor e Status OPENED

e Category Suboptimal e Source Utils.sol

Description This variable is redundant. Assigning the hardcoded value to a local variable is just
waste of gas.

Recommendation Either use named constant or hardcoded value.

Client comment Will be fixed in the next versions.

Listing 76: Redundant ETH_WITHDRAWAL_GAS_LIMIT variable

58 uint256 ETH.-WITHDRAWAL_GAS_LIMIT = 10000;

2.76 CVF-76 No check for the returned value

e Severity Minor e Status OPENED

e Category e Source Utils.sol
Description In Solidity ecrecover returns zero address on invalid signature, rather then throws.

This allows to sign anything with zero address.
Recommendation Always check ecrecover returned value and throw in case it is zero.

Listing 77: No check for the returned value

79 return ecrecover(_-messageHash, signV, signR, signS);

2.77 CVF-77 The Config contract converting

e Severity Minor e Status FIXED

e Category Suboptimal e Source Config.sol

Description This contract could be turned into a library.

Listing 78: The Config contract converting

8 contract Config {

38

ZkSync Phase 2 p. 2
Audit ABDK

2.78 CVF-78 Small 50 000 limit

e Severity Minor e Status OPENED

e Category Suboptimal e Source Config.sol

Description The original limit was 250,000, 50,000 limit is quite optimistic. It would not be enough
for complicated token contracts that charge transfer fees, pay dividends for holding tokens etc. See
the following answer for some estimates: https://ethereum.stackexchange.com/a/72573 If you want
default gas limit to be that low, there should be some way for a caller to override the limit to rescue
tokens whose transfer doesn’t fit into the default limit.

Client comment Decided to fix this in the next upgrades.

Listing 79: Small 50 000 limit

11 uint256 constant ERC20.WITHDRAWAL_GAS_LIMIT = 50000;

2.79 CVF-79 No access level for the ERC20_ WITHDRAWA _GAS _LIMIT constant

e Severity Minor e Status OPENED

e Category Suboptimal e Source Config.sol

Description Also, no access level specified for this constant, so internal access will be used by de-
fault.
Recommendation Consider specifying access level explicitly.

Listing 80: No access level for the ERC20_WITHDRAWAL_GAS_LIMIT constant

11 uint256 constant ERC20_-WITHDRAWAL_GAS_LIMIT = 50000;

2.80 CVF-80 No access level for the MASS_FULL_EXIT_PERIOD

constant
e Severity Minor e Status OPENED
e Category Suboptimal e Source Config.sol

Description No access level specified for this constant, so internal access will be used by default.
Recommendation Consider specifying access level explicitly.

Listing 81: No access level for the MASS_FULL_EXIT_PERIOD constant

77 uint constant MASS_FULL_EXIT_PERIOD = 3 days;

39

ZkSync Phase 2 p. 2
Audit ABDK

2.81 CVF-81 No access level for the
TIME_TO WITHDRAW_FUNDS_FROM_FULL_EXIT constant

e Severity Minor e Status OPENED

e Category Suboptimal e Source Config.sol

Description No access level specified for this contant, so internal access will be used by default.
Recommendation Consider specifying access level explicitly.

Listing 82: No access level for the TIME_TO_WITHDRAW_FUNDS_FROM_FULL_EXIT constant

79 ////@dev Reserved time for users to withdraw funds from
< full exit priority operation in case of an upgrade (in
< seconds)

2.82 CVF-82 No access level for the UPGRADE_NOTICE_PERIOD constant

e Severity Minor e Status OPENED

e Category Suboptimal e Source Config.sol

Description No access level specified for this constant, so internal access will be used by default.
Recommendation Consider specifying access level explicitly.

Listing 83: No access level for the UPGRADE_LNGBTICE_PERIOD constant

84 uint constant UPGRADE_NOTICE_PERIOD =
— MASS_FULL_EXIT_PERIOD + PRIORITY_EXPIRATION_PERIOD +
< TIME_TO_WITHDRAW_FUNDS_FROM_FULL_EXIT;

2.83 CVF-83 No access level for the
COMMIT_TIMESTAMP_NOT_OLDER constant

e Severity Minor e Status OPENED

e Category Suboptimal e Source Config.sol

Description No access level specified for this constant, so internal access will be used by default.
Recommendation Consider specifying access level explicitly.

Listing 84: No access level for the COMMIT_TIMESTAMP_NOT_OLDER constant

87 uint constant COMMIT_TIMESTAMP_NOT_OLDER = 8 hours;

40

ZkSync Phase 2 p. 2
Audit ABDK

2.84 CVF-84 No access level for
the COMMIT_TIMESTAMP _APPROXIMATION_DELTA constant

e Severity Minor e Status OPENED

e Category Suboptimal e Source Config.sol

Description No access level specified for this constant, so internal access will be used by default.
Recommendation Consider specifying access level explicitly.

Listing 85: No access level for the COMMIT_TIMESTAMP_APPROXIMATION_DELTA constant

91 uint constant COMMIT_TIMESTAMP_APPROXIMATION_DELTA =1
< minutes;

2.85 CVF-85 Redundant ” Add” in the variable name

e Severity Minor e Status OPENED

e Category Documentation e Source Events.sol

Description This event is nowhere emitted. Also, word “Add” in the name is probably redundant.
“PendingWithdrawals” would be enough.
Recommendation “PendingWithdrawals” would be enough.

Listing 86: Redundant Add in the variable name

79 event PendingWithdrawalsAdd (

2.86 CVF-86 Redundant queueStartindex property

e Severity Minor e Status OPENED

e Category Documentation e Source Events.sol

Description This property is redundant as it could be derived from the previous event.

Listing 87: Redundant queueStartIndex property

80 uint32 queueStartindex,

41

ZkSync Phase 2 p. 2
Audit ABDK

2.87 CVF-87 Unclear queueEndIndex index purpose

e Severity Minor e Status OPENED

e Category Unclear behavior e Source Events.sol

Description It is unclear whether this index is inclusive or not.

Listing 88: Unclear queueEndIndex index purpose

81 uint32 queueEndlndex
88 uint32 queueEndlndex

2.88 CVF-88 Not emitted PendingWithdrawalsComplete event

e Severity Minor e Status OPENED

e Category Suboptimal e Source Events.sol

Description This event is nowhere emitted. Also it name incorrect.
Recommendation Consider event naming via nouns, such as just Withdrawals.

Listing 89: Not emitted PendingWithdrawalsComplete event

86 event PendingWithdrawalsComplete(

2.89 CVF-89 Redundant queueStartindex property

e Severity Minor e Status OPENED

e Category Suboptimal e Source Events.sol

Description This property is redundant as it could be derived from the previous event.

Listing 90: Redundant queueStartIndex property

87 uint32 queueStartindex ,

42

ZkSync Phase 2 p. 2
Audit ABDK

2.90 CVF-90 Unseparated TokenPausedUpdate

e Severity Minor e Status OPENED

e Category Suboptimal e Source Governance.sol

Description It would be more gas efficient to have two separate events: TokenPause and TokenUnpause.
Client comment We will skip due to very small relative profit.

Listing 91: Unseparated TokenPausedUpdate event

29 event TokenPausedUpdate(

2.91 CVF-91 Unread mapping

e Severity Minor e Status OPENED

e Category Suboptimal e Source Governance.sol

Description This mapping is never read in the smart contract.

Listing 92: Unread address => bool mapping

49 /// @notice Paused tokens list, deposits are impossible
<~ to create for paused tokens

2.92 CVF-92 Unclear identification

e Severity Minor e Status OPENED

e Category Suboptimal e Source Governance.sol

Description Also, tokens are identified here by their IDs, while in other places within this smart
contract they are identified by their addresses.

Recommendation Probably address could be used here as well. Also, it would be more gas efficient
to store “paused” flags in “tokenlds” mapping in some bit above the lowest 16 bits, currently used
for token IDs.

Client comment We will skip due to very small relative profit.

Listing 93: Unclear indentification

50 mapping(uintl6 => bool) public pausedTokens;

43

ZkSync Phase 2 p. 2
Audit ABDK

2.93 CVF-93 Redundant " 52 constructor()” line

e Severity Minor e Status FIXED

e Category Suboptimal e Source Governance.sol

Description This line is redundant.

Listing 94: Redundant ”52 constructor() {}” line

52 constructor () {}

2.94 CVF-94 The "because it” typo

e Severity Minor e Status OPENED

e Category Documentation e Source Operations.sol

Description Should be "because they are”.
Client comment Deprecated part of code.

Listing 95: The because it typo

92 // We must ignore ‘accountld’' and operation type because
<~ it is present in block pubdata but not in priority queue

2.95 CVF-95 Increased gas consumption

e Severity Minor e Status OPENED

e Category Suboptimal e Source Operations.sol

Description The expression at the right is actually constant, so caching it in variable probably in-
creases gas consumption, rather than reduces it.

Listing 96: Increased gas consumption

93 uint skipBytes = ACCOUNT_ID_BYTES + OP_TYPE_BYTES;

44

ZkSync Phase 2 p. 2
Audit ABDK

2.96 CVF-96 Suboptimal slice copying

e Severity Minor e Status OPENED

e Category Suboptimal e Source Operations.sol

Description Copying a slice to a newly allocated bytes array just to hash it is suboptimal.
Recommendation Consider hashing bytes range in place. This will require some assembly, but
copying a slice requires some assembly as well. Also, there is extra space after the first occurrence
of “skipBytes” that ought to be removed.

Listing 97: Suboptimal slice copying

94 bytes memory lhs_trimmed = Bytes.slice(_lhs, skipBytes
< PACKED_DEPOSIT_PUBDATABYTES — skipBytes);

2.97 CVF-97 Suboptimal slice copying

e Severity Minor e Status OPENED

e Category Suboptimal e Source Operations.sol

Description Copying a slice to a newly allocated bytes array just to hash is suboptimal.
Recommendation Consider hashing bytes range in place. This will require some assembly, but
copying a slice requires some assembly as well.

Listing 98: Suboptimal slice copying

95 bytes memory rhs_trimmed = Bytes.slice(_rhs, skipBytes,
< PACKED_DEPOSIT_.PUBDATABYTES — skipBytes);

2.98 CVF-98 Ignored operation type

e Severity Minor e Status OPENED

e Category Suboptimal e Source Operations.sol

Description Operation type is not ignored here. Probably not an issue.
Client comment Deprecated part of code.

Listing 99: Ignored operation type

136 // ‘amount’ is ignored because it is present in block
— pubdata but not in priority queue

45

ZkSync Phase 2 p. 2
Audit ABDK

2.99 CVF-99 Unclear opType field behavior

e Severity Minor e Status FIXED

e Category Documentation e Source Operations.sol

Description This field seems to also be included in pubdata but ignored at serialization.
Recommendation Consider adding a comment.

Listing 100: Unclear opType field behavior

145 //uint8 opType

2.100 CVF-100 Confusing ChangePubkeyType name

e Severity Minor e Status OPENED

e Category Documentation e Source Operations.sol

Description The name is confusing, as it is unclear what “type” belongs to.
Recommendation Consider renaming to just “PubkeyType” if it belongs to public key, or to "Pub-
keyChangeType" if it belongs to change pubkey operation in general.

Listing 101: Confusing ChangePubkeyType name

188 enum ChangePubkeyType {

2.101 CVF-101 Unusual Create2 name

e Severity Minor e Status OPENED

e Category Documentation e Source Operations.sol

Description The corresponding opcode name is usually typed in upper case as “"CREATE2".
Recommendation Consider using upper case here as well.

Listing 102: Unusual Create2 name

190 Create?

46

	Introduction
	About ABDK
	About Customer
	About Customer
	Disclaimer

	Detailed Results
	CVF-1 No access level for the EMPTY_STRING_KECCAK
	CVF-2 Incorrect publicDataOffset field location
	CVF-3 Incorrect blockNumber and feeAccount location
	CVF-4 The magic number
	CVF-5 No comment for the upgradeNoticePeriodStarted() function
	CVF-6 No comment for the upgradePreparationStarted() function
	CVF-7 No comment for the upgradeCanceled()
	CVF-8 No comment for the upgradeFinishes()
	CVF-9 Lost check in the isReadyForUpgrade()
	CVF-10 No check for the _genesisStateHash
	CVF-11 Uninitialized numberOfPendingWithdrawals_DEPRECATED variable
	CVF-12 Suboptimal check
	CVF-13 Incorrect _tokenAddress type
	CVF-14 Check absence
	CVF-15 Similar variable naming
	CVF-16 Multiple priorityRequests[id] calculating
	CVF-17 Overflow in balanceToWithdraw += op.amount
	CVF-18 Not validated _zkSyncAddress
	CVF-19 Not validated _zkSyncAddress-2
	CVF-20 Gas spending
	CVF-21 Redundant calculating
	CVF-22 Unseparated require statements
	CVF-23 Redundant assignment
	CVF-24 Possible overflow in the commitBlocks operation
	CVF-25 Redundant logging
	CVF-26 Possible overflow in the withdrawOrStore
	CVF-27 Redundant conversion
	CVF-28 Several _blockExecuteData.storedBlock.blockNumber calculating
	CVF-29 Redundant check
	CVF-30 Incorrect totalBlocksProofed naming
	CVF-31 Multiply pubData hashing
	CVF-32 Overflow in the executeOneBlock
	CVF-33 Redundant block logging
	CVF-34 No event logging in the proveBlocks
	CVF-35 Inefficient data structure
	CVF-36 Inefficient assignment
	CVF-37 No check for the _proof.commitments
	CVF-38 Inconsistent function naming
	CVF-39 Dangerous conditional statement
	CVF-40 Suboptimal assignment totalBlocksProofed = totalBlocksCommitted;
	CVF-41 Unclear name
	CVF-42 Incorrect comment
	CVF-43 Uncommon uint(-1) form
	CVF-44 Redundant assignment
	CVF-45 The redundant emitDepositCommitEvent function
	CVF-46 Suboptimal totalBlocksProofed = totalBlocksCommitted; assign
	CVF-47 Redundan temitFullExitCommitEvent function
	CVF-48 Inefficient uint32 counter using
	CVF-49 The redundant check
	CVF-50 The redundant calculating
	CVF-51 Suboptimal bytes allocating
	CVF-52 Line refactoring
	CVF-53 Over-complicated CREATE2 public key method
	CVF-54 Unclear purpose 0 assignment
	CVF-55 Expensive hashing
	CVF-56 Overflow in the addPriorityRequest function
	CVF-57 Unclear logging purpose
	CVF-58 Dangerous function call
	CVF-59 Redundant payable function
	CVF-60 Draft code
	CVF-61 Magic number 500000
	CVF-62 Redundant variable
	CVF-63 Suboptimal assignment
	CVF-64 Redundant cast
	CVF-65 Suboptimal constant passing
	CVF-66 Redundant PendingWithdrawal_DEPRECATED struct
	CVF-67 Suboptimal the totalBlocksVerified variable
	CVF-68 Confusing totalCommittedPriorityRequests variable name
	CVF-69 Incorrect comment
	CVF-70 Non-existent StoredBlockInfo structure
	CVF-71 The comment to non-existent StoredBlockInfo structure
	CVF-72 Unclear comment
	CVF-73 No check for the callSuccess
	CVF-74 No check for the callSuccess-2
	CVF-75 Redundant ETH_WITHDRAWAL_GAS_LIMIT variable
	CVF-76 No check for the returned value
	CVF-77 The Config contract converting
	CVF-78 Small 50 000 limit
	CVF-79 No access level for the ERC20_WITHDRAWA_GAS_LIMIT constant
	CVF-80 No access level for the MASS_FULL_EXIT_PERIOD
	CVF-81 No access level for the TIME_TO_WITHDRAW_FUNDS_FROM_FULL_EXIT constant
	CVF-82 No access level for the UPGRADE_NOTICE_PERIOD constant
	CVF-83 No access level for the COMMIT_TIMESTAMP_NOT_OLDER constant
	CVF-84 No access level for the COMMIT_TIMESTAMP_APPROXIMATION_DELTA constant
	CVF-85 Redundant "Add" in the variable name
	CVF-86 Redundant queueStartIndex property
	CVF-87 Unclear queueEndIndex index purpose
	CVF-88 Not emitted PendingWithdrawalsComplete event
	CVF-89 Redundant queueStartIndex property
	CVF-90 Unseparated TokenPausedUpdate
	CVF-91 Unread mapping
	CVF-92 Unclear identification
	CVF-93 Redundant "52 constructor()" line
	CVF-94 The "because it" typo
	CVF-95 Increased gas consumption
	CVF-96 Suboptimal slice copying
	CVF-97 Suboptimal slice copying
	CVF-98 Ignored operation type
	CVF-99 Unclear opType field behavior
	CVF-100 Confusing ChangePubkeyType name
	CVF-101 Unusual Create2 name

