
abdk.consulting

ABDK
CONSULTING
SMART CONTRACT
AUDIT

Matter Labs
ZkSync. V9
Solidity

SMART CONTRACT AUDIT CONCLUSION

by Mikhail Vladimirov and Dmitry Khovratovich
29th June 2022

We’ve been asked to review updates to 5 files in a Github repo. We found 7 minor issues.

7

Minor

ABDK

https://github.com/matter-labs/zksync-dev/compare/vb-smart-contracts-v8-fix-audit-review...contracts-9

Findings

ID Severity Category Status

CVF-1 Minor Suboptimal Info

CVF-2 Minor Suboptimal Info

CVF-3 Minor Suboptimal Info

CVF-4 Minor Overflow/Underflow Info

CVF-5 Minor Suboptimal Info

CVF-6 Minor Suboptimal Info

CVF-7 Minor Readability Info

ABDK

ZkSync. V9
Review

Contents
1 Document properties 5

2 Introduction 6
2.1 About ABDK . 6
2.2 Disclaimer . 6
2.3 Methodology . 6

3 Detailed Results 8
3.1 CVF-1 . 8
3.2 CVF-2 . 8
3.3 CVF-3 . 9
3.4 CVF-4 . 9
3.5 CVF-5 . 10
3.6 CVF-6 . 10
3.7 CVF-7 . 11

4

ABDK

ZkSync. V9
Review

1 Document properties

Version

Version Date Author Description

0.1 June 4, 2022 D. Khovratovich Initial Draft

0.2 June 4, 2022 D. Khovratovich Minor revision

1.0 June 6, 2022 D. Khovratovich Release

1.1 June 29, 2022 D. Khovratovich New fix link and
conclusion are
added

2.0 June 29, 2022 D. Khovratovich Release

Contact

D. Khovratovich

khovratovich@gmail.com

5

ABDK

ZkSync. V9
Review

2 Introduction
The following document provides the result of the audit performed by ABDK Consulting at
the customer request. The audit goal is a general review of the smart contracts structure,
critical/major bugs detection and issuing the general recommendations.
We’ve been asked to review the V9 differences in the following files:

• AdditionalZkSync.sol

• Governance.sol

• Storage.sol

• TokenGovernance.sol

• ZkSync.sol

The fixes were provided in a new pull request.

2.1 About ABDK
ABDK Consulting, established in 2016, is a leading service provider in the space of blockchain
development and audit. It has contributed to numerous blockchain projects, and co-authored
some widely known blockchain primitives like Poseidon hash function. The ABDK Audit
Team, led by Mikhail Vladimirov and Dmitry Khovratovich, has conducted over 40 audits of
blockchain projects in Solidity, Rust, Circom, C++, JavaScript, and other languages.

2.2 Disclaimer
Note that the performed audit represents current best practices and smart contract standards
which are relevant at the date of publication. After fixing the indicated issues the smart
contracts should be re-audited.

2.3 Methodology
The methodology is not a strict formal procedure, but rather a collection of methods and
tactics that combined differently and tuned for every particular project, depending on the
project structure and and used technologies, as well as on what the client is expecting from
the audit. In current audit we use:

• General Code Assessment. The code is reviewed for clarity, consistency, style, and
for whether it follows code best practices applicable to the particular programming lan-
guage used. We check indentation, naming convention, commented code blocks, code
duplication, confusing names, confusing, irrelevant, or missing comments etc. At this
phase we also understand overall code structure.

• Entity Usage Analysis. Usages of various entities defined in the code are analysed.
This includes both: internal usages from other parts of the code as well as potential
external usages. We check that entities are defined in proper places and that their
visibility scopes and access levels are relevant. At this phase we understand overall
system architecture and how different parts of the code are related to each other.

6

ABDK

https://github.com/matter-labs/zksync-dev/compare/vb-smart-contracts-v8-fix-audit-review...contracts-9
https://github.com/matter-labs/zksync-dev/pull/2258/files
https://abdk.consulting
https://poseidon-hash.info

ZkSync. V9
Review

• Access Control Analysis. For those entities, that could be accessed externally, access
control measures are analysed. We check that access control is relevant and is done
properly. At this phase we understand user roles and permissions, as well as what assets
the system ought to protect.

• Code Logic Analysis. The code logic of particular functions is analysed for correctness
and efficiency. We check that code actually does what it is supposed to do, that
algorithms are optimal and correct, and that proper data types are used. We also check
that external libraries used in the code are up to date and relevant to the tasks they solve
in the code. At this phase we also understand data structures used and the purposes
they are used for.

7

ABDK

ZkSync. V9
Review

3 Detailed Results
3.1 CVF-1

• Severity Minor • Status Info

• Category Suboptimal • Source Governance.sol

Description This check is redundant, as it is anyway possible to set a dead governor address.
Client Comment Setters of address type parameters should include a zero-address check
otherwise contract functionality may become inaccessible. All in all, it is safer to have this
check for accidentally used incorrect zero-address.

Listing 1:

81 +r e q u i r e (_newGovernor != add r e s s (0) , "1n") ;

3.2 CVF-2

• Severity Minor • Status Info

• Category Suboptimal • Source Storage.sol

Description This change is actually not required, as even without this change, it was possible
to query the mapping value off-chain from the contract’s storage.

Listing 2:

160 −mapping (add r e s s => mapping (u i n t 32 => u in t256)) i n t e r n a l
↪→ authFac t sRese tT imer ;

+mapping (add r e s s => mapping (u i n t 32 => u in t256)) p u b l i c
↪→ authFac t sRese tT imer ;

8

ABDK

ZkSync. V9
Review
3.3 CVF-3

• Severity Minor • Status Info

• Category Suboptimal • Source TokenGovernance.sol

Description These checks don’t directly map to any of the vulnerabilities being fixed. They
seems redundant, as it is anyway possible to pass an invalid token address.
Recommendation Consider either removing them or explaining their role.
Client Comment It is related to another vulnerability in which it was possible to add a zero-
address token with nonzero token id, while zero-address should be reserved for ETH with zero
id.

Listing 3:

72 +r e q u i r e (_token != add r e s s (0) , " z1 ") ; // Token shou l d have a non
↪→ −z e r o add r e s s

+r e q u i r e (_token != $ (ZKSYNC_ADDRESS) , " z2 ") ; // Addres s o f the
↪→ token cannot be the same as the add r e s s o f the main zksync
↪→ c o n t r a c t

3.4 CVF-4

• Severity Minor • Status Info

• Category Overflow/Underflow • Source ZkSync.sol

Description Overflow is possible when converting to "uint16".
Recommendation Consider using safe conversion.
Client Comment It is ture that only becasue of the particular value of a configuration
constant, a fungible token ID always fits into 16 bits, but it’s made for consistency, ‘packAd-
dressAndTokenId‘, ‘increaseBalanceToWithdraw‘, already used ‘uint16‘ for token ID, it can be
changed but with a big legacy or more inconsistency.

Listing 4:

571 +i n c r e a s ePend i n gBa l a n c e (u i n t 16 (op . t o k en I d) , op . owner , op . amount)
↪→ ;

577 +i n c r e a s ePend i n gBa l a n c e (u i n t 16 (op . t o k en I d) , op . t a r g e t , op . amount
↪→) ;

582 + i n c r e a s ePend i n gBa l a n c e (u i n t 16 (op . t o k en I d) , op . owner , op .
↪→ amount) ;

9

ABDK

ZkSync. V9
Review
3.5 CVF-5

• Severity Minor • Status Info

• Category Suboptimal • Source ZkSync.sol

Description This linear search is inefficient.
Recommendation Consider allowing the caller to pass a hint with the index inside the "_com-
mittedBlocks" array of the first unverified block.
Client Comment It can be changed but with a big legacy or more inconsistency.

Listing 5:

654 +wh i l e (h a s hS t o r e dB l o c k I n f o (_committedBlocks [i]) !=
↪→ f i r s t U n v e r i f i e d B l o c k H a s h) {

3.6 CVF-6

• Severity Minor • Status Info

• Category Suboptimal • Source ZkSync.sol

Recommendation Instead of breaking the "for" loop into two "while" loops, it would be
simpler to just silently skip committed blocks that don’t pass this check, rather than revert
on them.
Client Comment In that case, it will be possible to bypass the "for" loop maliciously, and
directly jumps to "verfier" code. Then, it is necessary to add another boolean check whether
any block passed that check or not. All in all, it will have almost the same complexity.

Listing 6:

661 r e q u i r e (h a s hS t o r e dB l o c k I n f o (_committedBlocks [i]) ==
↪→ s t o r edB lo ckHashe s [c u r r e n tTo t a lB l o c k sP r o v en + 1] , "o1 ") ;

10

ABDK

ZkSync. V9
Review
3.7 CVF-7

• Severity Minor • Status Info

• Category Readability • Source ZkSync.sol

Description In some cases increment is now done as "x++" while in the other as "x += 1;".
Recommendation Consider using a consistent approach.
Client Comment That is correct. But, we may ignore it for the moment.

Listing 7:

830 − p r i o r i t yO p e r a t i o n s P r o c e s s e d++;
+ ++p r i o r i t yO p e r a t i o n s P r o c e s s e d ;

862 − p r i o r i t yO p e r a t i o n s P r o c e s s e d++;
+ ++p r i o r i t yO p e r a t i o n s P r o c e s s e d ;

1082 −t o t a lOp e nP r i o r i t y R e q u e s t s++;
+t o t a lOp e nP r i o r i t y R e q u e s t s += 1 ;

11

ABDK

	Document properties
	Introduction
	About ABDK
	Disclaimer
	Methodology

	Detailed Results
	CVF-1
	CVF-2
	CVF-3
	CVF-4
	CVF-5
	CVF-6
	CVF-7

